This function gives the model estimates.
Arguments
- X
one-dimensional exposure
- M
multivariate mediators
- Y
one-dimensional outcome
- I_update
interaction term
- tol
convergence criterion (default = -10^(-10))
- max.iter
maximum iteration (default = 10)
- lambda1
tuning parameter for regression coefficient L1 penalization
- lambda2
tuning parameter for covariance-inverse matrix
- alpha
alpha in glmnet() (default = 1: lasso penalty)
- penalty.factor
penalty factor vector, in the order of (c,b1,b2,a)
- verbose
print progress (default =
FALSE
)- Omega.out
output Omega estimates (default =
FALSE
)
Value
c: direct effect estimate
hatb1: path b1 (M->Y given X) estimates
hatb2: path b2 (X*M->Y) estimates
hata: path a (X->M) estimates
nump: number of selected paths + 1 direct effect
Omega: estimated covariance-inverse matrix of the mediators
sigmasq: estimated variance of the outcome
Examples
data = dat_gen(N = 400, V = 50, es = 1, seed = 1234)
X = data$X; Y = data$Y; M = data$M; I = X*M
model_estimate(X, M, Y, I, lambda1 = 0.2, lambda2 = 0.1, alpha = 1, Omega.out = F)
#> $c
#> [1] 0.2128745
#>
#> $hatb1
#> M1 M2 M3 M4 M5 M6 M7 M8
#> 0.2659559 0.3007976 0.2562496 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> M9 M10 M11 M12 M13 M14 M15 M16
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> M17 M18 M19 M20 M21 M22 M23 M24
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> M25 M26 M27 M28 M29 M30 M31 M32
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> M33 M34 M35 M36 M37 M38 M39 M40
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> M41 M42 M43 M44 M45 M46 M47 M48
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> M49 M50
#> 0.0000000 0.0000000
#>
#> $hatb2
#> M1 M2 M3 M4 M5 M6 M7 M8
#> 0.2005432 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> M9 M10 M11 M12 M13 M14 M15 M16
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> M17 M18 M19 M20 M21 M22 M23 M24
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> M25 M26 M27 M28 M29 M30 M31 M32
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> M33 M34 M35 M36 M37 M38 M39 M40
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> M41 M42 M43 M44 M45 M46 M47 M48
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> M49 M50
#> 0.0000000 0.0000000
#>
#> $hata
#> M1 M2 M3 M4 M5 M6 M7 M8
#> 0.6152488 0.6075804 0.6628388 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> M9 M10 M11 M12 M13 M14 M15 M16
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> M17 M18 M19 M20 M21 M22 M23 M24
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> M25 M26 M27 M28 M29 M30 M31 M32
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> M33 M34 M35 M36 M37 M38 M39 M40
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> M41 M42 M43 M44 M45 M46 M47 M48
#> 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> M49 M50
#> 0.0000000 0.0000000
#>
#> $nump
#> [1] 8
#>
#> $Omega
#> NULL
#>
#> $sigmasq
#> [1] 0.08324613
#>